

The use of silicone surfactant in Japanese

angelica (*Aralia elata*) treatments

By: Matthew Kaplan

Grade:11

White Plains High School

http://www.digood.com/search/more _products/silicone-spray/2.html

Introduction

- Silwet® L-77 is a surfactant.
 - opens up the stomata of the cell, allowing more respiration and nutrient production.
 - o are typically used to increase agricultural output.
- Silwet ® can be used in conjunction with other materials.
 - effects of herbicides, fertilizers and pesticides can be magnified with its use.
- 2 types of treatment:
 - basal bark treatment.
 - foliar treatment.

Introduction

- Japanese angelica tree (Aralia elata)
 - o introduced to the U.S. in 1830.
 - o yields small fruits which birds will eat.
 - o has incredible regenerative properties.
 - o grows near the forest's edge.
 - o grows in clusters.
- The Teatown Reservation has a powerline habitat that acts as a forest's edge.
 Angelica is rampant in that area.

http://www.spiralcage.com/rootless/? p=4285

Why is it bad?

- Japanese angelica trees are detrimental to the environment because their dense canopy obstructs light from reaching the forest floor.
 - o prevents other plants to grow under it.
 - diminished biodiversity in the area where the JAT grows.
- One of the benefits of having a powerline is a presence of different kinds of flora + fauna.

Methodology

- Study tested the efficacy of using Silwet® in food dye solutions.
 - o red/blue food dye was used.
 - both types of treatments were tested.
 - o control was water + food dye.
- Solutions were different for both experiments.
 - ex. groups for foliar- 0.5% Silwet®.
 - ex. groups for B.B. treatment- 2% Silwet®.
 - o red/blue dye in solutions remained consistent.

Methodology

- Foliar Treatment
 - o administered 10 µl of red dye solutions on leaves.
 - after 10 minutes, leaves were washed over a funnel with ethanol. remaining substance was collected in a glass container.
 - substances were tested for absorbency using a colorimeter.
- o BB Treatment-
 - bark of tree was lathered with the blue dye solutions.
 - 1 hour- chiseled off the bark of tree to observe infiltration in xylem.
 - 24 hours- observed chiseled bark for seepage and other irregularities.

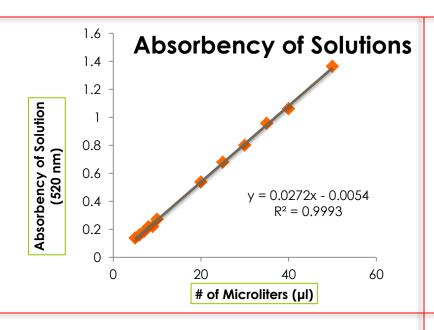
Basal Bark Treatment

- The basal bark treatment showed little to no infiltration in the xylem around trees treated with the control solution 24 hours after application.
- Trees treated with the experimental solution showed infiltration after just 1 hour.
- 24 hours after application, spreading was seen along the veins of experimental plants.

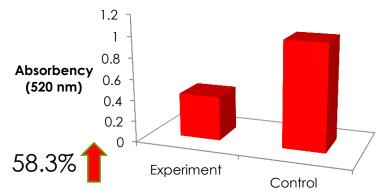
Basal Bark Treatment

Experiment	Control

	After 1	
	Hour	After 24 Hours
BB(E) 1	Υ	Spread to veins in xylem of tree
BB(E) 2	Υ	Seeped in and around pores
BB(E) 3	Υ	Seeped in and around pores
		More spreading than all experiment
BB(E) 4	Υ	subjects
		Ants were on open area of bark,
BB(E) 5	Υ	otherwise blue in pores.
BB (C) 1	N	Slightly Blue around edges, mostly green
BB (C) 2	N	Green
BB (C) 3	N	Green
BB (C) 4	N	Green
BB (C) 5	N	Green


Foliar Treatment

- The results for the foliar treatment showed that the leaf absorbed more red dye when exposed to the Silwet® solution.
 - using a colorimeter, the solutions showed how much dye was not absorbed by the leaf.
- Creating specific ratios of solutions and then testing their absorbency.


 Calculate approximately how much red dye was absorbed by the plant.

Foliar Treatment

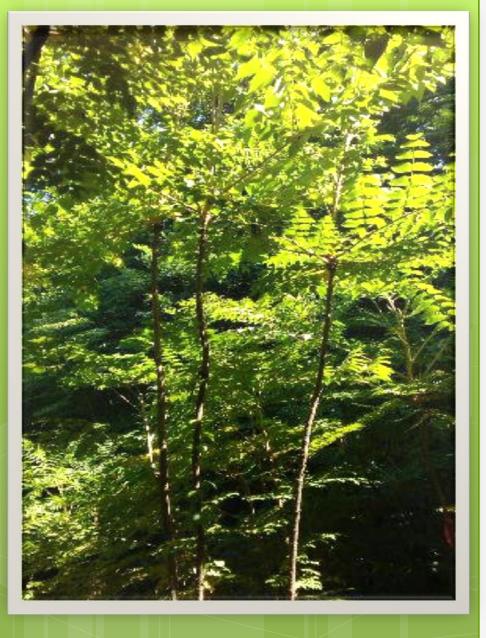
Absorbency of Test Samples

F-E-1	0.509
F-E-2	0.166
F-E-3	0.513
F-E-4	0.305
F-E-5	0.602
F-C-1	0.959
F-C-2	1.012
F-C-3	1.002
F-C-4	0.979
F-C-5	1.075

Avg. Experiment	Avg. Control
0.419	1.0054

Conclusion/Discussion

- Inclusion of Silwet® in solutions can help transport foreign materials into a tree.
 - both basal bark and foliar treatments are amplified with the use of Silwet® L-77.
- Further research should use herbicides.
 - test ground infiltration.
 - test surrounding plants when using foliar treatment.
 - use of different invasive species.
 - find out what the Silwet® is exploiting in basal bark treatments


Acknowledgements

- TESA and Teatown Staff (Rebecca + Hillary)
- Mom and Dad
- Special thanks to Chris Hannon
- All of the other students at TESA!

The use of silicone surfactant in Japanese

angelica (*Aralia elata*) treatments

By: Matthew Kaplan

Grade:11

White Plains High School

http://www.digood.com/search/more _products/silicone-spray/2.html